

EVAPORATOR TON METHOD

Recold MC Series evaporative condenser models may be selected by using one of two different methods. The simplest method is based on evaporator ton load and is intended for open type reciprocating compressor applications only.

The second method is based on the total heat of rejection, which provides a more comprehensive and accurate selection. In addition to selecting units for open type reciprocating compressor systems, this method may be applied to selecting condensers for systems with centrifugal, hermetic reciprocating or rotary screw type compressors. The total heat of rejection method can be found on page 3.

SELECTION USING EVAPORATOR TON METHOD:

The MC condenser model numbers in **Table 1** are equal to the unit capacity in evaporator tons at standard conditions for refrigerant 12, 22, 404/507, 134 and 502 at 105°F condensing temperature, 40°F suction temperature and 78°F wet bulb. To select a unit for non-standard conditions, enter **Tables 2** and **Table 3** to select capacity correction factors and multiply times

the system evaporator ton load. Select the standard unit model number which is greater than or equal to the result.

Example:

Given:

Evaporator Load, R-22 75 Tons
Entering Air Wet Bulb 72°F
Condensing Temperature 105°F
Suction Temperature 30°F

Selection:

Evaporator Capacity Factor = 0.86

Suction Pressure Capacity Factor = 1.03

75 Tons x $0.86 \times 1.03 = 66.4$ Corrected Tons

Select Model MC70 since its model number is greater than the design corrected evaporator load.

TABLE NO. 1: Standard Conditions

	MC Model Number and Capacity														
50	60	70	90	100	110	130	150	170	200	220	250	280	300	340	

TABLE NO. 2: Evaporator Capacity Factors

				Refrigera	nts R22, R	404/507, F	R134 – No	n-Standar	d Condition	ns							
	Pressure SIG	Cond. Temperature	Wet Bulb Temperature "F														
R134A	R22	°F	50	55	60	65	68	70	72	75	78	80	85	90			
95.2	155.7	85	1.05	1.16	1.33	1.61	1.87	1.98	2.26	2.80							
104.3	168.4	90	.90	.98	1.11	1.28	1.43	1.54	1.72	1.96	2.33	2.70					
113.9	181.8	95	.75	.85	.93	1.04	1.12	1.18	1.28	1.39	1.59	1.75	2.50				
124.1	195.9	100	.70	.75	.81	.88	.93	.97	1.03	1.11	1.22	1.32	1.70	2.53			
134.9	210.8	105	.63	.66	.70	.76	.79	.83	.86	.93	1.00	1.05	1.27	1.67			
146.3	226.4	110	.57	.60	.63	.67	.70	.72	.75	.80	.85	.89	1.02	1.26			
158.4	242.7	115		.54	.57	.60	.63	.64	.66	.69	.73	.75	.84	.99			
171.1	259.9	120				.53	.55	.56	.58	.60	.63	.65	.70	.81			

Evap Load x Factors = Corrected Tons

TABLE NO. 3: Suction Pressure Capacity Factors

Suction	R-134A	3.6	2.0	6.5	12.0	18.4	26.1	35.0	45.4
Pressure PSIG	R-22	10.2	16.5	24.0	32.8	43.0	54.9	68.5	84.0
Suction Ten	nperature °F	-20	-10	0	+10	+20	+30	+40	+50
Capacit	y Factor	1.32	1.23	1.17	1.11	1.07	1.03	1.00	.97

HEAT OF REJECTION METHOD

Many times, the specification for an evaporative condenser will be expressed in "Total Heat Rejection" (THR) at the condenser, rather than the net refrigeration effect at the evaporator. Basically, Total Heat Rejection is the sum of the compressor capacity in BTUH and the heat corresponding to the brake horsepower (bhp) in BTUH for open type compressors or to the kilowatt (kW) input in BTUH for hermetic compressors.

SELECTION METHOD:

The first step in the Heat of Rejection method is to determine both the evaporator load and the heat rejected by the compressor in BTUH. These two loads combine to form the total heat load that must be rejected by the condenser.

Evaporator loads in BTUH can readily be determined from data provided by the manufacturer. Compressor loads can be calculated from one of the following two formulas based on compressor type:

Open Type Compressors: THR = Compressor bhp x 2545 Hermetic Compressors: THR = Compressor kW x 3413

Once the total heat of rejection requirements are known, the selection method is similar to the evaporator ton method. For non-standard conditions use the Capacity Factor from **Table 5**. Then multiply the factor times the system total heat of rejection. Select the model from **Table 4** whose heat of rejection is greater than or equal to this product.

Example:

Given:

Compressor Evaporator Capacity 51 Tons
Entering Air Wet Bulb 75°F
Condensing Temperature 105°F

Type of Compressor Hermetic R-22 Compressor kW Input 49.0 kW

Selection:

1) Calculate Total Heat of Rejection

Evaporator: 51 Tons x 12,000 = 612,000 BTUH

Compressor: 49.0 KW x 3413 = 167,000 BTUH

Total Heat of Rejection = 779,000 BTUH

2) Adjustment for Design Conditions Capacity Factor for 75°F WB and 105°F Cond. = 0.93 779,000 BTUH x 0.93=724,470 BTUH or 724.5 MBH Select Model MC50 since its nominal total heat rejection is greater than or equal to the required THR.

Table 4 - Heat Rejection MB

Model	Heat Rejection MBH
MC50	735
MC60	882
MC70	1029
MC90	1323
MC100	1470
MC110	1617
MC130	1911
MC150	2205

Model	Heat Rejection MBH
MC170	2499
MC200	2940
MC220	3234
MC250	3675
MC280	4116
MC300	4410
MC340	4998

TABLE NO. 5: Heat Rejection Capacity Factors

				Refrigeran	ts R22, R1	34A, R404	1/507 – N	on-Standa	rd Conditi	ons				
	Pressure SIG	Temperature °F					,	Wet Bulb T	emperature F	Э				
R34A	R22	Г	50	55	60	65	68	70	72	75	78	80	85	90
78.6	133.5	75	1.46	1.66	1.96	2.51	3.11	3.46	4.26					
86.7	145.0	80	1.26	1.41	1.64	2.03	2.44	2.69	3.19	3.93	4.02			
95.2	155.7	85	1.10	1.22	1.39	1.67	1.94	2.13	2.45	2.94	3.02	3.63		
104.2	168.4	90	.93	1.02	1.14	1.32	1.47	1.59	1.75	2.00	2.38	2.75	3.34	
113.9	181.8	95	.80	.87	.95	1.08	1.16	1.22	1.32	1.45	1.61	1.79	2.56	3.09
124.1	195.9	100	.71	.76	.82	.89	.93	1.00	1.03	1.12	1.23	1.33	1.72	2.50
134.9	210.8	105	.63	.66	.70	.76	.79	.83	.86	.93	1.00	1.05	1.27	1.61
146.3	226.4	110	.56	.59	.62	.66	.70	.71	.75	.79	.84	.88	1.01	1.19
158.4	242.7	115		.52	.55	.58	.60	.62	.64	.67	.70	.73	.81	.92
171.1	259.9	120				.51	.53	.54	.55	.57	.60	.62	.68	.75

The MC Series can be furnished with the condenser coil divided into individual refrigerant circuits, each sized to meet a specified capacity. Each circuit is supplied with a hot gas inlet connection and liquid outlet connection tagged for identification.

The procedure for selecting a multi-circuited condenser coil is described in the "Selection Example" below. For circuit identification purposes it is required that circuits be arranged in sequence. Connections for the individual circuits, will be numbered at the factory, from left to right when facing connection end of unit, with the number 1 circuit being on the extreme left.

Selection Example:

Given:

Condensing Temperature 100°F
Entering Air Wet Bulb Temp. 72°F

Ten individual suction cooled hermetic compressor capacities, as shown in the tabulation below:

- 1. Tabulate data in Columns 1, 2 and 3, making sure circuits are in correct numerical sequence.
- 2. From **Table 6** "Hermetic Compressors", select Evaporator Temperature Capacity Factor applicable to each Suction Temperature listed in Column 2 and tabulate in Column 4.
- 3. From **Table 7**, select "Condenser Capacity Conversion Factor" applicable to the design condensing temperature and the design entering air wet bulb temperature and tabulate in Column 5.
- 4. Multiply figures in Columns 3, 4 and 5 for each circuit, and tabulate in Column 6.
- Add all the capacities in Column 6 to arrive at the Total Adj. BTUH to Nominal required and use the total to select the proper size condenser.

Selection:

The adjusted load of 654,840 BTUH should be compared to "Total Unit BTUH" column in **Table 8**. The smallest unit that will meet the requirement is Model **MC50** with a THR of 735,000 BTUH

To determine the number of tube circuits required for each circuit divide Column 6 by Column 7, and tabulate in Column 8. If the decimal part of the tube circuit requirement is less than .3, drop the decimal and enter the whole number in Column 9. If the decimal part is equal to or greater than .3, round off to the next higher whole number and enter in Column 9.

The "Tabulation Example" shows 26 tube circuits are required and Table 8 shows that Model MC50 has 36 tube circuits available, therefore, it is the proper unit selection.

NOTE:

If the summation of the number of tube circuits assigned to the individual circuits is less than the total number of tube circuits available in the unit, add enough tubes to effect a balance. If the summation of the number of tube circuits assigned to the individual circuits is greater than the total number of tube circuits available in the unit, delete enough tubes to effect a balance. However, if such reduction causes more than a 10 percent reduction in any of the circuits, go to the next larger unit size and reassign tube circuits to give adequate capacity to every circuit.

Tabulation Example

1	2	3	х	4	Х	5	=	6	÷	7	=	8	9
Circuit Number	Suction Temperature °F	Comp. Capacity BTUH	х	Evap. Temp. Cap. Conversion Table 6	х	Cond. Cap. Conversion Factor Table 7	=	Adj. BTUH to Nominal	÷	Capacity Per Tube Circuit Table 8	=	Number of Circuits Required	Number of Circuits Used
1	-10	22,500	Х	1.69	Х	1.03	=	39,165	÷	26,008		1.50	2
2	-5	35,200	×	1.65		1.03	=	59,822	÷	26,008		2.30	2
3	+30	72,800	X	1.36	×	1.03	=	101,978	÷	26,008		3.92	4
4	+15	45,400	X	1.48		1.03	=	69,208	÷	26,008	÷	2.66	3
5	-20	41,600	×	1.79	×	1.03	=	76,698	÷	26,008		2.95	3
6	+40	70,100	X	1.33		1.03	=	96,030	÷	26,008		3.69	4
7	-15	29,700	×	1.74	x	1.03	=	53,228	÷	26,008		2.05	2
8	-20	45,500	×	1.79	×	1.03	=	78,357	÷	26,008		3.01	3
9	-10	19,500	X	1.69	×	1.03	=	33,944	÷	26,008		1.30	1
10	+5	28,700	×	1.57	X	1.03	=	46,410	÷	26,008		1.789	2
								654,840					26

Table 6 - Evaporative Temperature Capacity Conversion Factor

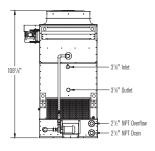

Evaporative Temperature °F	-40	-30	-25	-20	-15	-10	-5	0	5	10	15	20	25	30	35	40	45	50
Open Compressors	1.75	1.65	1.62	1.59	1.55	1.53	1.50	1.47	1.44	1.40	1.37	1.35	1.32	1.30	1.28	1.26	1.24	1.22
Hermetic Compressors	2.02	1.90	1.852	1.79	1.74	1.69	1.65	1.61	1.57	1.51	1.48	1.45	1.40	1.36	1.34	1.33	1.32	1.31

Table 7 - Condenser Capacity Conversion Factors

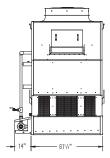
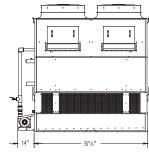
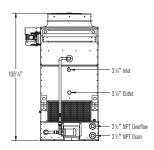
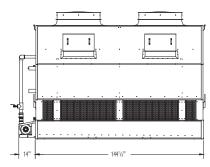

					Refri	gerants 1	2, 22, 500	and 502						
	Pressure SIG	Cond. Temperature					,	Wet Bulb 7	emperature F	9				
R134A	R22	°F	50	55	60	65	68	70	72	75	78	80	85	90
78.6	133.5	75	1.46	1.66	1.96	2.51	3.11	3.46	4.26					
86.7	145.0	80	1.26	1.41	1.64	2.03	2.44	2.69	3.19	3.93	4.02			
95.2	155.7	85	1.10	1.22	1.39	1.67	1.94	2.13	2.45	2.94	3.02	3.63		
104.3	168.4	90	.93	1.02	1.14	1.32	1.47	1.59	1.75	2.00	2.38	2.78	3.34	
113.9	181.8	95	.80	.87	.95	1.08	1.16	1.22	1.32	1.45	1.61	1.79	2.56	3.09
124.1	195.9	100	.71	.76	.82	.89	.93	1.00	1.03	1.12	1.23	1.33	1.72	2.50
134.9	210.8	105	.63	.66	.70	.76	.79	.83	.86	.93	1.00	1.05	1.27	1.61
146.3	226.4	110	.56	.59	.62	.66	.70	.71	.75	.79	.84	.88	1.01	1.19
158.4	242.7	115	.49	.52	.55	.58	.60	.62	.64	.67	.70	.73	.81	.92
171.1	259.9	120	.41	.45	.48	.51	.53	.54	.55	.57	.60	.62	.68	.75

Table 8 - Total Heat Rejection Capacity


Model Number	Number of Tube Circuits Available	•	ature, 78°F WB Temperature 12, R22 and R502
		Total Unit BTUH	BTUH per Tube Circuit
MC50	36	735,000	20,417
MC60	36	882,000	24,500
MC70	36	1,029,000	28,584
MC90	36	1,323,000	36,750
MC100	36	1,470,000	40,834
MC110	36	1,671,000	44,917
MC130	36	1,911,000	53,084
MC150	36	2,205,000	61,250
MC170	36	2,449,000	29,417
MC200	72	2,,940,000	40,834
MC220	72	2940,000	44,917
MC250	72	3,234,000	51,041
MC280	72	3,675,000	57,166
MC300	72	4,116,000	61,250
MC340	72	4,410,000	69,417


Connection Elevation


Side Elevation MC50-MC70

Side Elevation MC90-MC110

Connection Elevation

Side Elevation MC130-MC170

TABLE NO. 9: Schematic

Note: Use this bulletin for preliminary layouts only.

Obtain current drawing from your Recold sales representative.

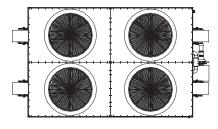
	I	Fan	D Matau		Dimensions		Wei	ght Ib	Remote Sump
Model	Motor hp	Air Volume cfm	Pump Motor hp	Height	Length	Width	Shipping	Operating	gallons required
MC50	5	12,600	1	108 %"	61 1/4"	49 ¾"	1,540	2,660	105
MC60	5	12,300	1	108 %"	61 1/4"	49 ¾"	1,640	2,830	105
MC70	5	11,800	1	108 %"	61 1/4"	49 ¾"	1,730	3,000	105
MC90	(2) 3	19,500	1	108 %"	97 1/8"	49 ¾"	2,360	4,150	175
MC100	(2) 3	19,000	1	108 %"	97 1/8"	49 ¾"	2,510	4,420	175
MC110	(2) 3	18,500	1	108 %"	97 1/8"	49 ¾"	2,680	4,720	175
MC130	(2) 5	32,400	1 ½	108 %"	144 1/8"	49 ¾"	3,030	5,700	270
MC150	(2) 5	30,300	1 ½	108 %"	144 1/8"	49 ¾"	3,270	6,100	270
MC170	(2) 5	29,000	1 ½	108 %"	144 1/8"	49 ¾"	3,500	6,550	270

AVAILABLE OPTIONS

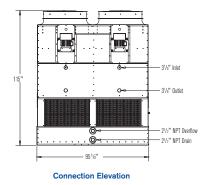
Stainless Pan and Casing For maximum corrosion protection, Recold can provide a unit with the pan and casing constructed entirely from stainless steel.

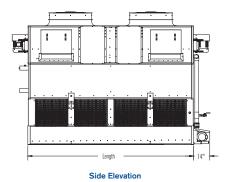
Sub-Cooling Coil The sub-cooling coil consists of an additional coil section located below the standard condensing coil. It provides approximately 10°F of sub-cooling at standard conditions for halocarbon refrigerants. Specifying a sub-cooling will slightly increase height and alter certain connection elevations. Please consult Recold sales representative for certified dimensions.

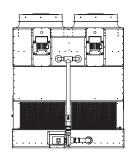
Other Coil Options Additional coil options can be provided including: heavy wall tubing, external headers and multiple circuits.


Basin Heaters For freeze protection of the cold water in the basin, electric immersion heaters are available. Heaters are sized to maintain a 40°F minimum basin water temperature at a -10°F ambient temperature.

Control Panel For single point connection, factory wired control panels are available. The U.L. panel includes the fan motor starters, disconnect switch, and submersible bulb thermostat; all inside a NEMA 12 enclosure.


Special Motors A full line of optional motors are available including: high-efficiency, low-speed, special enclosures and special voltages or frequencies.


Vibration Isolation The Recold M Series is designed for smooth and quiet operation. If design conditions require additional vibration isolation, spring type vibration isolator rails can be supplied for field installation.


Other options are available. Contact your Recold sales representative for more information.

Plan View

Pump Elevation

TABLE NO. 10: Schematic

Note: Use this bulletin for preliminary layouts only.

Obtain current drawing from your Recold sales representative.

	ſ	-an	Pump Motor		Dimensions		Wei	ght lb	Remote Sump
Model	Motor hp	Air Volume cfm	hp	Height	Length	Width	Shipping	Operating	gallons required
MC200	(4) 5	48,000	2	115"	97 1/8"	95 %"	5,070	8,890	350
MC220	(4) 5	46,500	2	115"	97 1/8"	95 %"	5,410	9,490	350
MC250	(4) 5	53,400	2	115"	120 %"	95 %"	5,840	10,610	445
MC280	(4) 5	51,900	2	115"	120 %"	95 %"	6,240	11,330	445
MC300	(4) 5	58,800	3	115"	144 1/8"	95 %"	6,600	12,330	540
MC340	(4) 5	57,200	3	115"	144 1/8"	95 %"	7,070	13,170	540

GENERAL NOTES

- 1. Supporting Steel: Purchaser to design, construct and furnish supporting steel complete with 7/8" diameter anchor bolt holes to suit. All steel must be framed flush and level at top. Maximum beam deflection to be 1/360 of span, not to exceed 1/2" at anchor bolts.
- 2. Operating Weight and Loads: These loads are based upon normal water level in sump pan at shutdown.
- 3. Wind Loads: Construction drawings furnished upon request.
- 4. Anchor Bolts: All anchor bolts are 3/4" inch diameter and are to be furnished by others. Wind loads at anchorage points are additive to operating loads.
- 5. Shipping Weight, Operating Weight, Operating Loads: These weight and loads do not include optional accessory weights. Contact Recold sales representative for accessory weights when applicable.

- **6. Concrete Slabs:** When installed at grade most units are anchored to a flat concrete slab. All applicable piping connections are designed to allow adequate clearance for connecting purchaser's piping to the unit when installed on a concrete slab.
- 7. Vibration Isolation: If unit is to be supported on vibration isolators, the preferred location for the isolators is beneath steel beams and the unit base rails. If necessary to install isolators between the unit base rails and supporting steel beams, contact Recold sales representative for allowable type and arrangement of isolators for a specific model and for dimensional changes on anchor bolt hole locations.

Furnish	Recold model MC	induced draft evaporativ	e condenser(s). Each unit shall h	ave a condensing
capacity of _	MBH total heat rejection v	vhen operating with	refrigerant at	
	_°F condensing temperature and	°F design wet bulb t	emperature.	

Heat Transfer Coil: The heat exchange coil tubes shall be constructed of copper to provide maximum corrosion resistance. Coil tubes shall be 5/8" OD copper tubing with type L headers. Tubes shall be supported by stainless steel tube sheets with floating tube design for long life. The completed coil section shall be leak tested under water at 350 psig.

Mechanical Equipment: A high-quality bearing assembly, specifically designed for cooling tower service shall be provided. Bearings will be greased at the factory with extended lubelines provided. The fan shaft shall be stainless steel. Fans shall be low sound, axial propeller type with GRP blades for highefficiency and long life. V-belt drive shall be designed for 150% of motor horsepower. Belt adjustment shall be accomplished from the exterior of the unit. Each fan section shall have dividers to allow the fans to be cycled individually.

Fan Motor: Fan motors (4) shall be minimum 5 hp 1800 RPM open drip-proof type designed for outdoor service with 1.15 service factor on _____ volts, ____ phase, and _____hertz. All motors shall be mounted outside the tower with a protective rain cover included.

Water Distribution: System shall be designed to evenly and completely distribute the spray water over the coil. Spray nozzles shall be PVC large orifice, non-clogging design, attached to PVC headers with stainless steel clamps. Nozzle spray pattern shall be a full 360° for maximum distribution. Internal piping and fittings shall be made entirely of schedule 40 PVC for maximum corrosion protection.

Recirculation Pump: The water recirculation pump shall be close-coupled, centrifugal type with mechanical seal. A minimum _____ hp open drip proof type pump motor designed for outdoor service with a 1.15 service factor suitable for service on ____volts, ____ phase, and _____hertz shall be provided.

Drift Eliminators: Shall be of cellular type, thermoformed PVC. The eliminator design shall incorporate three changes of air direction with maximum drift rate less than 0.001% of the circulating water rate.

Louvers: Shall be constructed of PVC in a cellular pattern supported in easily removable subassemblies. Shall provide directional changes to the entering air to prevent splashout.

Pan and Casing: The evaporative condenser shall be constructed of stainless steel sump pan and G-235 galvanized steel casing panels. Panels shall be flanged outward for greater rigidity and to eliminate connecting fasteners from penetrating inside the tower wet section. The pan bottom shall be sloped design to allow for easy draining and cleaning. At least one access door to the top section shall be provided for easy inspection and service. The access doors shall be made from stainless steel and operate without any gasket of fasteners.

Safety: The M Series is designed for routine maintenance to be performed from the base of the unit's exterior, eliminating the need for permanent access to the top. The upper horizontal surface is not intended for use as a working platform. Specific reference to the safety of personnel performing maintenance and inspection procedures can be found in the Operation and Maintenance instructions.

550 W MERCURY LANE
BREA, CALIFORNIA 92821 USA
714 529 6080 | spxcooling@spx.com
spxcooling.com

and/or material change without notice.

